Indole Synthesis via Palladium-Catalyzed Intramolecular Cyclization of Alkynes and Imines

Akira Takeda, Shin Kamijo, and Yoshinori Yamamoto*

Department of Chemistry, Graduate School of Science Tohoku University, Sendai 980-8578, Japan

Received February 2, 2000

Indole is one of the most basic units among a wide variety of naturally occurring alkaloids, and much attention has been paid to developing a new methodology for the construction of this structural framework.¹ Among the approaches employing transition metal catalysts,² the palladium-catalyzed ring construction of indole has been investigated widely.³ The previous methods are categorized under the following three types: the intramolecular cyclization of 2-alkynylanilines (a in Scheme 1),^{3a-d} Heck-type cyclization of 2-halo-*N*-allyl-^{3e} or vinylanilines (**b**),^{3f,g} and intermolecular cycloaddition of 2-haloanilines and internal alkynes (c).^{3h-j} Therefore, the indole ring is formed between N and C-2 (a), between C-3 and C-aryl (b), and between N and C-2 and between C-3 and C-aryl (c). We report an entirely new palladiumcatalyzed indole synthesis in which 2-(1-alkynyl)-N-alkylideneanilines 1 give 2-substituted-3-(1-alkenyl)indoles 2 in good yields (eq 1). Here the bond formation takes place between C-2

and C-3 (d).⁴

The results are summarized in Table 1. When *N*-benzylidene-2-(1-pentynyl)aniline (**1a**) was heated at 100 °C for 25 h in the presence of 5 mol % palladium acetate and 20 mol % tri-*n*butylphosphine in 1,4-dioxane, 3-((*E*)-1-butenyl)-2-phenylindole (**2a**) was formed in 88% NMR yield (entry 1). It is known that 2- or 3-alkenylindoles are unstable,⁵ and actually at the beginning we had difficulty isolating **2a** in a pure form. However, we found that pure **2a** could be isolated with Al₂O₃ column chromatography (hexane–AcOEt 50–20/1) in 58% yield (entry 1). The hydro-

(4) For the C-2–C-3 bond formation via radical cyclization: (a) Fukuyama, T.; Chen, X.; Peng, G. J. Am. Chem. Soc. **1994**, 116, 3127. (b) Tokuyama, H.; Yamashita, T.; Reding, M. T.; Kaburagi, Y.; Fukuyama, T. J. Am. Chem. Soc. **1999**, 121, 3791. (c) Rainier, J. D.; Kennedy, A. R.; Chase, E. Tetrahedron Lett. **1999**, 40, 6325.

(5) (a) Bergamasco, R.; Porter, Q. N.; Yap, C. Aust. J. Chem. 1977, 30,
1531. (b) Lambert, J. D.; Porter, Q. N. Aust. J. Chem. 1981, 34, 1483. (c)
Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.;
Pergamon: Oxford, U.K., 1984; Vol. 4, p 282.

Scheme 1. Palladium-Catalyzed Indole Syntheses

Table 1. Palladium-Catalyzed Cyclization of Alkynylimines 1^a

entry	1	R ¹	R ²	R ³	2	yield (%) ^b
1	la	Et	н	\neg	2a	58 (88)
2	16	Et	Н		2b	70 (65)
3	1c	Et	Н	- N	2c	64 (99)
4	1d	Et	Н	-√ ^S]	2d	70 (78)
5	le	Et	Н	-€ ^{CH} 3	2e	63 (82)
6 ^c	1f	-(CH ₂) ₅ -			2f	71
7	lg	OTHP ^d	Н		2g ^e	56 (61)
8	1h	CH ₂ OMOM ^f	Н		2h	55 (60)
9	1i	(CH ₂) ₂ CO ₂ Et	Н		2i	59 (73)

^{*a*} Pd(OAc)₂ (5 mol%), nBu₃P (20 mol%), 1,4-dioxane (0.5 M), 100 °C in the sealed vial. ^{*b*} Isolated yield. Yield in parentheses was determined by ¹H NMR. ^{*c*} Reaction was carried out at 80 °C. ^{*d*} THP, tetrahydropyranyl. ^{*e*} Trans:cis = 4:1 as determined by ¹H NMR. ^{*f*} MOM, methoxymethyl.

genation of **2a** with H₂/Pd–C gave 3-butyl-2-phenylindole in 60% yield, confirming the structure of **2a** unambiguously. The *p*-nitrophenyl-substituted substrate **1b** reacted smoothly within 7 h to give **2b** in 70% yield. 4-Pyridyl **1c**, 2-thienyl **1d**, and 2-(5-methylfuryl) derivatives **1e** afforded the corresponding indoles **2c–e**, respectively, in good yields (entries 3–5). Cyclohexyl derivative **1f** afforded the β , β -disubstituted vinylindole **2f** in a good yield. Not only ethyl-substituted derivatives but also the functional group-substituted **1g–i** gave the corresponding indoles **2g–i** in moderate isolated yields. An attempt to prepare alkyl-substituted imines failed because of lack of stability of the resulting imines.⁶ Accordingly, we attempted the in situ formation of the imine from the 2-alkynylaniline **3** and cyclohexanecarboxaldehyde followed by subsequent cyclization. This trial proceeded well and **2j** was obtained in 52% yield (eq 2). The in

10.1021/ja000390p CCC: \$19.00 © 2000 American Chemical Society Published on Web 05/27/2000

⁽¹⁾ For a recent review, see: Toyota, M.; Ihara, M. Nat. Prod. Rep. 1998, 15, 327.

^{(2) (}a) For reviews, see: Hegedus, L. S. Angew. Chem., Int. Ed. Engl. **1988**, 27, 1113. (b) Colquhoun, H. M.; Holston, J.; Thompson, D. J.; Twigg, M. V. New Pathway for Organic Synthesis: Practical Applications of Transition Metals; Plenum Press: New York, 1984; p 148. (c) Sakamoto, T.; Kondo, Y.; Hiroshi, Y. Heterocycles **1988**, 27, 2225.

^{(3) 2-}Alkynylanilines: (a) Taylor, E. C.; Katz, A. H.; Salgado-Zamora, H.; McKillop, A. Tetrahedron Lett. 1985, 26, 5963. (b) Iritani, K.; Matsubara, S. Utimoto, K. Tetrahedron Lett. 1988, 29, 1799. (c) Arcadi, A.; Cacchi, S.; Marinelli, F. Tetrahedron Lett. 1992, 33, 3915. (d) Kondo, Y.; N, Shiga.; Murata, N.; Sakamoto, T.; Yamanaka, H. Tetrahedron 1994, 50, 11803. N-Allyl-2-haloanilines: (e) Larock, R. C.; Basu, S. Tetrahedron Lett. 1987, 28, 5291. N-Vinyl-2-haloanilines: (f) Kasahara, A.; Szumi, T.; Murakami, S.; Yanai, H.; Takatori, M.; Bull. Chem. Soc. Jpn. 1986, 59, 927. (g) Sakamoto, T.; Nagano, T.; Kondo, Y.; Yamanaka, H. Synthesis 1990, 215. Intermolecular cycloaddition of 2-haloanilines and alkynes: (h) Larock, R. C.; Yum, E. K. J. Am. Chem. Soc. 1991, 113, 6689. (i) Larock, R. C.; Yum, E. K.; Refvik, M. D. J. Org. Chem. 1998, 63, 7652. (j) Roesch, K. R.; Larock, R. C. Org. Lett. 1999, J, 1551.

situ reaction of **3** with the other secondary aliphatic aldehydes, such as 2,2-diphenylethanal, 2-phenylpropanal, and 2-methylpropanal, proceeded without problem to give the corresponding indoles **2k**, **2l**, and **2m**, respectively, in good to acceptable yields. The in situ reaction of **3** with benzaldehyde gave **2a** in 74% NMR yield.

To clarify the mechanism of this unprecedented palladiumcatalyzed cyclization, the reaction of the deuterated substrate 4was examined (eq 3). Nondeuterated 2a was produced in 76%

NMR yield. If the oxidative addition of the C–D bond of imine **4** to palladium followed by the carbopalladation or hydropalladation to alkyne takes place, the product deuterated at the C-1 position of the alkenyl substituent should be obtained.⁷ On the other hand, when the reaction of nondeuterated **1a** was carried out in the presence of deuterium oxide (1.0 equiv), the deuterated product **5** was obtained in 80% NMR yield in which D content

at the C-1 position of the alkenyl substituent was 29%.⁸ Accordingly, the reaction proceeds most probably through the regioselective insertion of a palladium–hydride species to the alkyne of **1** (Scheme 2). The resulting vinylpalladium **6** would give **9** either through the carbopalladation (leading to **7**)– β -hydride elimination pathway or through the oxidative addition (leading to **8**)–reductive elimination route.⁹ The bond rearrangement of the indolenine **9** would give **2**. It is known that the reaction of Pd(OAc)₂ with Bu₃P gives Pd(0), Bu₃P=O, and Ac₂O

Scheme 2. Plausible Mechanism

Scheme 3

 $Pd(OAc)_{2} + Bu_{3}P \longrightarrow Pd^{0} + Bu_{3}P=O + Ac_{2}O$ $Ac_{2}O + H_{2}O \implies 2 AcOH$ $Pd^{0} + AcOH \implies AcO-Pd \cdot H$

(Scheme 3).¹⁰ As previously reported,¹¹ a palladium-hydride species would be formed by the reaction of Pd(0) with AcOH, which is generated in situ by the hydrolysis of Ac₂O with H₂O.¹² Actually the reaction of **1a** in the presence of 2.5 mol % Pd₂-dba₃•CHCl₃, 10 mol % *n*-Bu₃P, and 1.1 equiv of AcOD gave **5** in 42% NMR yield in which D content at C-1 position of alkenyl substituent was 21%. Furthermore, the above reaction did not occur in the absence of AcOD.

The palladium-catalyzed intramolecular cyclization of the alkyne and imine functional groups of **1** gives functionalized 3-alkenylindoles **2**, which are not easily available via the traditional synthetic methods, in good yields. Especially, *the three-component coupling reaction (amine, aldehyde, alkyne)* for the indole synthesis (as shown in eq 2) is attractive. Further studies are in progress in our laboratories.

Supporting Information Available: Experimental procedures and spectroscopic and analytical data for relevant compounds (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA000390P

⁽⁶⁾ The reaction of **3** with the corresponding aromatic aldehydes with Na₂-SO₄, MgSO₄, and Dean–Stark dehydrator was very sluggish and not completed even after a prolonged reaction time. However, the use of molecular sieves gave **1a**–**i** in high yields with shorter reaction times. In the case of aliphatic aldehydes, there was no need to use molecular sieves: (a) Sandler, S. R.; Karo, W. *Organic Functional Group Preparations*; Academic Press: Orlando, FL, 1986; Chapter 12. (b) Layer, R. B. *Chem. Rev.* **1963**, *63*, 489. (7) For a recent review for C–H bond activation, see: (a) Gerald, D. Angew.

⁽⁷⁾ For a recent review for C-H bond activation, see: (a) Gerald, D. Angew. Chem., Int. Ed. 1999, 38, 1698. Oxidative addition of aldehyde's C-H bond to a transition metal complexes: (b) Barnhart, R. W.; McMorran, D. A.; Bosnich, B. Chem. Commun. 1997, 589. (c) Kokubo, K.; Matsubara, K.; Miura, M.; Nomura, M. J. Org. Chem. 1997, 62, 4564. (d) Lenges, C. P.; Brookhart, M. J. Am. Chem. Soc. 1997, 119, 3165. (e) Kondo, T.; Akazome, M.; Tsuji, Y.; Watanabe, Y. J. Org. Chem. 1990, 55, 1286.

⁽⁸⁾ No deuterium was found in the other carbons of the indole product.

⁽⁹⁾ The intramolecular cyclization of vinylpalladium and aldehydes or ketones, see: (a) Quan, L. G.; Gevorgyan, V.; Yamamoto, Y. J. Am. Chem. Soc. **1999**, 121, 3545. (b) Gevorgyan, V.; Quan, L. G.; Yamamoto, Y. Tetrahedron Lett. **1999**, 40, 4089. (c) Tao, W.; Silverberg, L. J.; Rheingold, A. L.; Heck, R. F. Organometallics **1989**, 8, 2550. (d) Larock, R. C.; Doty, M. J.; Cacchi, S. J. Org.Chem. **1993**, 58, 4579. For the intramolecular cyclization of vinylpalladium and imines, see ref 3j.

⁽¹⁰⁾ Mandai, T.; Matsumoto, T.; Tsuji, J.; Saito, S. Tetrahedron Lett. **1993**, 34, 2513.

^{(11) (}a) For a review, see: Trost, B. M. Acc. Chem. Res. **1990**, 23, 34. (b) Trost, B. M.; Lee, D. C.; Rise, F. *Tetrahedron Lett.* **1989**, 30, 651.

⁽¹²⁾ It is thought that trace amounts of H₂O exist in the reaction media, although a dry solvent was used.